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Abstract This article provides a unified treatment of an extensive category of non-linear
classical field models whereby the universe is represented (perhaps as a brane in a higher
dimensional background) in terms of a structure of a mathematically convenient type de-
scribable as hyperelastic, for which a complete set of equations of motion is provided just
by the energy-momentum conservation law. Particular cases include those of a perfect fluid
in quintessential backgrounds of various kinds, as well as models of the elastic solid kind
that has been proposed to account for cosmic acceleration. It is shown how an appropri-
ately generalised Hadamard operator can be used to construct a symplectic structure that
controles the evolution of small perturbations, and that provides a characteristic equation
governing the propagation of weak discontinuities of diverse (extrinsic and extrinsic) kinds.
The special case of a poly-essential model—the k-essential analogue of an ordinary poly-
tropic fluid—is examined and shown to be well behaved (like the fluid) only if the pressure
to density ratio w is positive.

1 Introduction

As a generalisation of the category of media that are elastic in the ordinary variational sense
[1, 2], the extensive category of models referred to here as “hyperelastic” is characterised
by an action density L that can be formulated as a non-linear function just of a set of scalar
p + 1 scalar fields ϕ0, ϕ1, . . . , ϕp and their gradient components ϕ0

,a, ϕ
1
,a, . . . , ϕ

p
,a with

respect to coordinates x̄a (a = 0,1, . . . , p) on a p + 1 dimensional worldsheet with codi-
mension q ≥ 0 in a background space time endowed with Lorentz signature metric that has
components gμν with respect to coordinates xμ (μ = 0,1, . . . , p + q).

This work is intended for the treatment of scenarios of the usual cosmological type with
space dimension p = 3, and it is set up (using a background tensor formalism of the kind
[3] that was originally developed for the treatment of conducting cosmic strings [5]) in such
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a way as to be applicable not just to models of the traditional kind in which the background
spacetime dimension is 4, so that the codimension q vanishes, but also to models of more
exotic “brane world” varieties, in which the background is of higher dimension, 5 or more.

In a typical cosmological application of such a model, ϕ0 would represent a “quintessence
scalar” of the kind commonly invoked [6, 7], to account for the apparent observation of
cosmic acceleration while the other scalars ϕ1, ϕ2, ϕ3 would be interpretable as comoving
(Lagrange type) coordinates of a material medium of the “normal” kind which in the sim-
plest case would be of ordinary perfect fluid type. However instead of being a perfect fluid,
the “normal” matter characterised by such comoving coordinates could just as well be an
elastic solid of the kind envisaged by Bucher and Spergel [8–10].

In a non-cosmological application for which a model of this hyperelastic kind might be
used, the “normal” constituent could be that of a solid neutron star crust, within which a
freely flowing superfluid neutron current would be characterised by the scalar field, whose
gradient would be the neutron momentum covector, μa = ϕ0

,a . In that case the scalar would
have to be of ignorable type (meaning that the Lagrangian would depend just on its gradient
but not on its undifferentiated value ϕ0) so that, according to (43), the neutron current would
automatically be conserved. (It is however to be remarked that in a realistic treatment of a
neutron star crust it may be necessary to allow for the possibility [11] that the superfluid
neutron constituent may not be separately conserved, so that a more elaborate kind of model
would then be needed.)

Whatever its dimension, the background spacetime metric will induce a corresponding
worldsheet metric with components

ḡab = gμνx
μ

,ax
ν
,b, (1)

and with determinant |ḡ| in terms of which the action integral will be expressible as

I =
∫

L‖ḡ‖1/2dp+1x̄. (2)

In order for the system to be considered as regular, the induced metric on the worldsheet
must of course itself have a Lorentz signature, and furthermore the scalar field gradients
must be linearly independent so that the fields themselves will be adoptable as an admissible
set of worldsheet coordinates, for which we shall simply have x̄a = ϕa , which entails that
the Lagrangian density L will depend just on the undifferentiated position coordinates ϕa

and on the corresponding set of p(p + 1)/2 induced metric components ḡab .
A subcategory of particular interest consists of models for which the Lagrangian contri-

butions from “scalar” and “normal” parts separate as a sum of the form L = LS + LN, in
which the “normal” part LN is independent of ϕ0 and of ḡ0a, while the “scalar” part is a
(non-linear) function only of ϕ0 and of its squared gradient as given by the single induced
metric component ḡ00.

2 Dynamics of a Regular Hyperelastic System

Whichever coordinate system is used, the worldsheet stress energy density tensor will have
components given [3] by

T ab = 2‖ḡ‖−1/2 ∂(‖ḡ‖1/2L)

∂ḡab

. (3)
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and there will be a corresponding world hyper-elasticity tensor defined on the worldsheet in
the manner introduced by Friedman and Schutz [2] as

C
abcd = ‖ḡ‖−1/2 ∂(‖ḡ‖1/2T ab)

∂gcd

= C
cdab, (4)

which (modulo a proportionality factor of −2) is interpretable as a relativistic extension of
an ordinary (purely spacelike) Cauchy type elasticity Eabcd such as will be discussed below.

These worldsheet tensors will map naturally into corresponding background space time
tensors given by the expressions

T μν = T abxμ
,ax

ν
,b = 2

∂L

∂ḡμν

+ Lḡμν, (5)

C
μνρσ = C

abcdxμ
,ax

ν
,bx

ρ
,cx

σ
,d = ∂T μν

∂ḡρσ

+ 1

2
T μνḡρσ , (6)

in which ḡμν denotes the (first) fundamental tensor of the worldsheet as defined [3] in terms
of the contravariant version ḡab of the induced metric by the formula

ḡμν = ḡabxμ
,ax

ν
,b. (7)

When the codimension q vanishes the overline is redundant here as (7) will then just give
back the contravariant version gμν of the background spacetime metric, and the correspond-
ing mixed version ḡμ

ν will then be just the same as the Kronecker unit tensor δμ
ν , but in

a background of higher dimension n > p + 1 this mixed version ḡμ
ν will be a non trivial

(rank p + 1) projector mapping vectors onto their world sheet tangential parts, and giving a
corresponding world sheet gradient operator

∇̄ν = ḡμ
ν∇μ, (8)

in which the distinguishing overline is again redundent in, but only in, the case of vanishing
codimension q .

As in more general brane models [3], when the variational field equations ensuring in-
variance of the action with respect to localised perturbations of the worldsheet and the dy-
namical fields theron are satisfied, it will automatically follow as a Noether identity that the
stress energy given by (3) will satisfy a divergence condition of the standard form

∇̄μT μ
ν = 0. (9)

What distinguishes hyperelastic models from others of a more general kind is that in the
hyperelastic case no other evolution equations are needed: by itself (9) is not only necessary
but will also be sufficent to ensure that the variational field equations are all satisfied.

The way this works is that, to start with, the evolution of the world sheet location (which
will only be needed if the codimension q is non-zero) will be governed as always [3] by the
orthogonal projection of (9) which will take the standard form

T μνKμν
ρ = 0, (10)

in which Kμν
ρ is the second fundamental tensor as defined [3] by

Kμν
ρ = ḡσ

ν∇̄μḡρ
σ . (11)
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As well as the Weingarten integrability condition Kμν
ρ = Kνμ

ρ this defining relation ensures
the worldsheet orthogonality condition Kμν

ρḡσ
ρ = 0, which evidently entails that Kμν

ρ

itself will vanish in the traditional q = 0 case, for which there are no external dimensions so
that ḡσ

ρ will just be the identity matrix δσ
ρ .

When the condition (10) (involving q independent component equations) has been satis-
fied, the remaining part of (9) will consist just of its tangentially projected part, namely the
set of p + 1 internal component equations given by

ḡν
ρ∇̄μT μ

ν = 0, (12)

which is just what is needed to determine the evolution of the p + 1 independent worldsheet
scalars ϕa .

3 Symplectic Perturbation Currents and Characteristic Equation

The sufficiency of the divergence condition (9) as a complete set of equations of motion
can be understood as a consequence of the feature that with respect to a reference system
of the prefered kind in which the scalars φa are used directly as worldsheet coordinates,
the configuration of the system will be fully determined just by the specification of the
background coordinates xν as fonctions of these scalars.

It follows that, with respect to such a preferred system, a perturbation of the configuration
will be fully determined just by the specification of the corresponding background coordi-
nate displacement, δxμ = ξμ say, which, to be dynamically admissible, must of course be
such as to satisfy the linear evolution equation obtained as the first order perturbation of (9).
When another particular solution, δxμ = ημ say, is already available (for example as a trivial
perturbation generated by a symmetry of the system) then the linear equation governing a
generic perturbation ξμ will be conveniently expressible as the conservation,

∇̄νΩ
ν = 0, (13)

of a symplectic worldsheet surface current (such as is also of interest [12] for the purpose of
quantisation) of the kind that has recently been shown to be straightforwardly constructable
for a widely extended category of brane systems [4]. As in the case of applications [5] to
conducting cosmic strings, so also in the more general hyperelastic systems considered here,
the possibility of expressing the perturbation just in terms of a displacement vector ξμ allows
the symplectic current Ων to be given explicitly by an expression of the form

Ων{�ξ, �η} = ημ
Oμ

ν{�ξ} − ξμ
Oμ

ν{�η}, (14)

in terms of what I shall refer to as the hyper-Hadamard operator, which is a linear differential
operator whose action on the vector field �ξ is given by a prescription of the form

Oμ
ν{�ξ} = H

ν σ
μ ρ ∇̄σ ξρ (15)

in terms of a corresponding hyper-Hadamard tensor that can be seen [4] to be given in terms
of the hyper Cauchy tensor (6) by the formula

H
ν σ

μ ρ = gμρT
νσ + 2C

ν σ
μ ρ . (16)
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It is to be remarked that the standard decomposition

gμρ = ḡμν+ ⊥μν, (17)

of the background metric into respectively worldsheet tangential and worldsheet orthogonal
parts ḡμν and ⊥μν (of which the latter will vanish when the codimension q is zero) will
engender a corresponding decomposition

H
ν σ

μ ρ = H̄
ν σ

μ ρ + H
⊥ν σ
μ ρ , (18)

in which the world sheet tangential part is given by

H̄
μνρσ = H̄

abcdxμ
,ax

ν
,bx

ρ
,cx

σ
,d , H̄

abcd = ḡacT bd + 2C
abcd , (19)

and the remainder in (18) is given simply by

H
⊥ν σ
μ ρ =⊥μρ T νσ . (20)

As in the simple elastic case [13], one can obtain the characteristic equation governing
the propagation of a discontinuity across a worldsheet hypersurface with normal covector

λa = λμ xμ
,a, λμ ⊥μ

ν = 0, (21)

of the second derivative of the perturbation vector �ξ , using the Hadamard rule to the effect
that it must be given by an expression the form

[∇̄μ∇̄νξ
ρ] = λμλνζ

ρ, (22)

in which the vector �ζ is a measure (whose calibration depends on the normalisation of
the—possibly null—characteristic covector λa) of the amplitude of the discontinuity. It can
be seen to follow from this rule that the discontinuity of the divergence of the symplectic
current (14) will have the form

[∇̄νΩ
ν{�ξ, �η}] = ημ

H
ν σ

μ ρ λνλσ ζ ρ. (23)

Since the conservation law (13) is applicable to an arbitrary reference perturbation solution
�η (for which undifferentiated components ημ may be chosen without restriction at any single
given point) it can be seen that the characteristic covector λμ must satisfy the condition

H
ν σ

μ ρ λνλσ ζ ρ = 0. (24)

For extrinsic perturbations of the worldsheet location, as obtained by taking �ζ to be
worldsheet orthogonal, it can be seen from (20) that we simply recover the result (which
is already known [3] to apply for a generic, not just hyperelastic, brane model) that the
characteristic covector must be a null eigenvector of the stress energy tensor:

ḡμνζ
ν = 0 ⇒ T μνλμλν = 0. (25)

On the other hand for tangential perturbations—the only kind that can exist when the codi-
mension q is zero—the characteristic equation will be expressible in purely worldsheet ten-
sorial form:

ζμ = xμ
,aζ

a ⇒ Qacζ
c = 0, (26)
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with

Qac = Qca = H̄
b d

a c λbλd . (27)

The condition for λa to be an intrinsic characteristic covector is thus that the determinant
|Q| of this symmetric matrix (27) should vanish.

4 Standard Flow Decomposition

To qualify as hyperelastic in the strictest sense, the system should include a subsystem of
ordinary elastic type, as characterised by the requirement that all the scalar fields except one,
ϕ0 say, should have spacelike gradients and therefore timelike worldsheets that intersect on
a congruence of timelike worldlines, whose unit world tangent vector, with components ua

say, will be specified, for A = 1, . . . , p, by

uaϕA
,a = 0, ḡabu

aub = −1. (28)

Subject to the understanding that the small letters refer to an arbitrary worldsheet coordinate
system, but that the capitals refer to a system of the preferred type specified by setting
x̄0 = ϕ0 and x̄A = ϕA, the induced metric components on which the action depends can then
be listed in a system of the latter type as

ḡ00 = ḡabϕ0
,aϕ

0
,b, ḡA0 = ḡabϕA

,aϕ
0
,b, (29)

and

ḡAB = ḡabϕA
,aϕ

B
,a = γ abϕA

,aϕ
B

,a = γ AB, (30)

in which the space projected part of the metric is specified in of the usual way as

γ ab = ḡab + uaub. (31)

The generic action variation will be expressible in terms of these quantities in the form

δL = ∂L

∂ϕ0
δϕ0 + ∂L

∂ϕA
δϕA + L00 δḡ00 + 2LA0δḡ

A0 + LAB δḡAB, (32)

which provides the components with respect to the preferred system of the worldsheet tensor

Lab = ∂L

∂ḡab
(33)

whose contravariant version Lab = ḡacḡbdLcd provides the partial derivatives

∂L

∂ḡab

= −Lab (34)

that are needed for the evaluation of the expression (3) for the stress energy tensor, which
works out as

T ab = Lḡab − 2Lab. (35)
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At the next order one obtains the tensor

Labcd = ∂Lab

∂ḡcd
= ∂2L

∂ḡab∂ḡcd
(36)

which provides the partial derivatives

∂2L

∂ḡab∂ḡcd

= Labcd + La(cḡd)b + ḡa(cLd)b (37)

that are needed for the evaluation of the expression (4) for the hyper-Cauchy tensor, which
is thereby obtained as

C
abcd = 2(Labcd +La(cḡd)b + ḡa(cLd)b)−(Labḡcd + ḡabLcd)+ L

2
(ḡabḡcd −2ḡa(cḡd)b). (38)

According to (19) the hyper-Hadamard tensor will therefore be given (using square brackets
for index antisymmetrisation) by the expression

H̄
abcd = 4Labcd + 2Lacḡdb + 2La[d ḡb]c + 2ḡa[dLb]c + Lḡa[d ḡb]c, (39)

from which it can be seen that the characteristic matrix (27) will be obtained as

Qac = 2(Lac ḡbd + 2L b d
a c )λbλd . (40)

The expansion (32) provides a corresponding Eulerian variation—as carried out for an
undisplaced worldsheet location at a fixed value of the background coordinates xμ and met-
ric gμν—that will be expressible in the form

δEL = ∂L

∂ϕ0
δϕ0 + ∂L

∂ϕA
δϕA + J a

0 δϕ0
,a + J a

A δϕA
,a, (41)

in terms of current vectors given by

J a
0 = 2ḡab (L00ϕ

0
,b + LA0ϕ

A
,b), J a

A = 2ḡab(LA0ϕ
0
,b + LABϕB

,b), (42)

which, according to the variational field equations, will have to satisfy worldsheet diver-
gence conditions of the form

∇̄aJ
a

0 = ∂L

∂ϕ0
, ∇̄aJ

a
A = ∂L

∂ϕA
. (43)

5 The Separated Case

In many of the applications of interest a substantial simplification will be provided by the
separation of the action density as a sum of the form

L = LS + LN (44)

in which the “normal” part, LN, is independent of ϕ0, and ϕ0
,a so that it has the form of

the action density of an ordinary elastic medium as specified [1, 14] as a function just of ϕA
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and ḡAB , while the remainder LS is just the action of a simple, albeit non-linear, scalar field
model, means that it depends only on ϕ0 and on the magnitude, μ say, of its gradient 1-form

μa = ϕ0
,a, (45)

as given by

ḡ00 = ḡabμaμb = −μ2. (46)

In such a system, neither part will have any dependence on ḡA0, so the cross terms (pro-
viding the effect known as “entrainment”) in the currents (42) will vanish,

LA0 = 0. (47)

The two subsystems will thus be effectively decoupled, except to the extent that they interact
via their effect on the worldsheet location itself whenever the codimension q is non zero,
or alternatively, if the codimension is zero, is zero, via their gravitational coupling, which
can in that case can be easily incorporated (by requiring the background field gμν to satisfy
Einstein’s equations or some generalisation thereof) but which is not so easy to deal with
in a higher dimensional background (for which suitable methods of regularisation [15, 16]
may be needed).

The other components of the tensor Lab in the separated system will be given by

L00 = ∂LS

∂ḡ00
= − ∂LS

∂(μ2)
, (48)

and by

LAB = ∂LN

∂ḡAB
= 1

2
(LNγAB − PAB), (49)

where γAB is the covariant inverse of the contravariant base space metric γ AB = ḡAB defined
by (30), and PAB will be interpretable as the correspondingly index lowered version of the
pressure tensor P AB of the medium, from which its elasticity tensor will be obtainable in
the usual way [1] as

E AB
CD = 2

∂P AB

∂ḡCD
− P AB γCD. (50)

This means that with respect to arbitrary worldsheet coordinates the pressure tensor Pab =
PABϕA

,aϕ
B

,b of the elastic medium will have a contravariant version expressible as

P ab = LNγ ab − 2γ acγ bdLcd (51)

while the ordinary elasticity tensor of the medium will be given by

Eabcd = Lmed(γ
abγ bc − 2γ a(cγ d)b) + P a(cγ d)b + γ a(cP d)b − 4γ aeγ bf γ cgγ dhLefgh. (52)

It follows from (35) that the total stress energy tensor will be given by the sum

T ab = T ab
S + T ab

N , (53)
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in which the scalar field contribution will be given by

T ab
S = LS ḡab − 2Lab

S , Lab
S = −L′

Sμ
aμb, L′

S = ∂LS

∂(μ2)
, (54)

which means that the scalar field will have a pressure PS and rest frame energy density ρS

given by

PS = LS, ρS = 2μ2L′
S − LS, (55)

while the contribution from the “normal” part will be given by an expression of the standard
form

TN = ρN uaub + P ab, ρN = −LN. (56)

6 Separated Characteristic Equations

Like the stress tensor, so also the hyperelasticity tensor will be expressible in the separated
case as a sum

C
abcd = C

abcd
S + C

abcd
N , (57)

in which, according to (38), the scalar field contribution will be given by

C
abcd
S = 2(Labcd

S + L
a(c

S ḡd)b + ḡa(cLd)b) − (Lab
S ḡcd + ḡabLcd

sca) + LS

2
(ḡabḡcd − 2ḡa(cḡd)b),

(58)
with

Labcd
S = L′′

Sμ
aμbμcμd, L′′

S = ∂L′
S

∂(μ2)
, (59)

while for the contribution from the “normal” elastic medium it can be seen that we shall
recover the Friedman Schutz [2] formula

C
abcd
N = −1

2
Eabcd + P a(cud)ub + uau(cP d)b − 1

2
(P abucud + uaubP cd)

+ 1

2
ρ(ḡabḡcd − 2ḡa(cḡd)b). (60)

In the separated case the crossed element, with respect to the preferred coordinate system,
of the characteristic matrix (27) will automatically vanish

Q0A = 0, (61)

and there will be a decoupling of the “normal” characteristic modes, for which the disconti-
nuity amplitude ζ a is orthogonal to μa , from the “scalar” characteristic mode for which ζ a

is aligned with ua . The latter is given by

ζA = 0 ⇒ Q00 = 0, (62)

so that one obtains a scalar characteristic equation in the form

(2L′′
S(μ

aλa)
2 − L′

Sλ
2, λ2 = ḡab)λaλb = 0. (63)
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As the relative propagation speed vS will be definable using a standard calibration of the
characteristic covector λa by

v 2
S = (μaλa)

2/μ2, λ2 = 1 − v 2
S , (64)

it can be seen that the characteristic equation just gives the condition

v−2
S = 1 + 2μ2L′′

S/L
′
S. (65)

It can thus be seen that for a scalar model of the “standard” kind with a linear equation of
state, meaning one with L′′

S = 0, the discontinuities will travel at the speed of light, v 2
S = 1,

while for other models of k-essence [17] or more general kinds [18] it can be seen that the
condition for causality, v 2

S ≤ 1, and the reality condition for local stability, v 2
S ≥ 0, will both

be satisfied if and only if the scalar equation of state is such that

2μ2L′′
S/L

′
S ≥ 0. (66)

As well as these simple “scalar” characteristic modes (not to mention the extrinsic char-
acteristic modes that may exist, subject to (25), if there is a higher dimensional background)
there will be different kinds of “normal” characteristic modes given by

ζ 0 = 0 ⇒ QACζC = 0, (67)

so that using the standard calibration

λa = νa + vua, νau
a = 0, νaνa = 1, (68)

to define the relative propagation velocity v and propagation direction νa (modulo a sign
that may be chosen to make v positive) the corresponding characteristic condition on the
normal covector λa will be the vanishing of the p-dimensional determinant of the matrix
whose components can be seen from (40) to be given by

QAC = 2(LACλ2 + 2LABCDνBνD), λ2 = 1 − v2. (69)

For the simple fluid case—as given by the restriction that LN should depend only on the
components of the base metric γAB only via its determinant |γ |—one will obtain

LAB = −L


NγAB, L



N = ∂LN

∂(ln|γ |) = |γ |∂LN

∂|γ | , (70)

so the pressure tensor will have the isotropic form,

P ab = PNγ ab, (71)

in which the ordinary pressure scalar will be given by the well known (but in my previous
review [14] miscopied) formula

PN = LN + 2L


N. (72)

In terms of the corresponding bulk modulus, namely

βN = −2P


N = −2|γ | ∂PN

∂|γ | = −2L


N − 4L




N, (73)
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one will obtain

LABCD = −1

4
βγABγCD + 1

2
L



NγACγBD + L



NγA[DγB]C, (74)

and the elasticity tensor will be given [14] by

Eabcd = (βN − PN)γ abγ cd + 2PNγ a(cγ d)b. (75)

It can thus be seen that—as in the more general case of an isotropic solid configuration
[10]—the characteristic equation (67) for the “normal” fluid will have solutions of two kinds,
namely longitudinal modes with v = vL, and transverse modes with v = vS, of which the
latter are non propagating in the fluid—as opposed to solid—case,

ζAνA = 0 ⇒ v2 = v 2
S , v 2

S = 0, (76)

while the former are just ordinary sound waves,

ζA = νA ⇒ v2 = v 2
L , v 2

L = βN/(ρN + PN). (77)

7 Discussion: Polytropic and Poly-Essential Equations of State

For both a “normal” fluid and a “scalar” constituent, an important role is played by their
respective pressure to density ratios, namely

wN = PN/ρN, wS = PS/ρS, (78)

which can be seen to be given by

wN = 1 + 2L


N/LN, w−1

S = 2μ2L′
S/LS − 1. (79)

In recent years it has become common, in specialised cosmological (though not general
astrophysical) literature, to use a rather loose terminology whereby the pressure to density
ratio is referred to as the “equation of state”, an appelation that is jusifiable only if the ratio
in question is actually constant. If—as will often but not always be a good approximation—
it can be supposed that this ratio, wN or wS as the case may be, is constant then it will indeed
characterise a corresponding equation of state. In the “normal” fluid case, such an equation
of state will be of what is known (in the astrophysical literature) as polytropic type, with
polytropic index γN, as given an ansatz of the form

LN = −C|γ |−γN/2, γN = 1 + wN, (80)

for some constant coefficient C. In the “scalar” case, the postulate that wS should be constant
can be seen to imply that the equation of state will be of what may be termed poly-essential
type, as given by a power law ansatz, with index αS, of the form

LS = KμαS , αS = 1 + w−1
S , (81)

in which the coefficient K is independent of the field gradient magnitude μ, but is given
as some function just of the scalar field magnitude ϕ0. This means that the poly-esssential
ansatz (81) characterises a special subcategory within the category of quintessential models
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called k-essential [17]. This subcategory includes a model of the “standard” type, namely
the trivial case of a free massless scalar field, in the limit when wS = 1, which corresponds
to αS = 2.

Attention in cosmology has centered during recent years on the observational evidence to
the effect that the universe is accelerating, which suggests the need [19] for a model with a
rather strongly negative value, somewhere in the range between −1/3 and −1, for the mean
pressure to density ratio w. This poses a problem for a “normal” fluid model of the kind
specified for a given value of wN by the equation of state (80) for which it is well known
that the longitudinal modes (79) will have propagation velocity given by

v 2
L = wN, (82)

so that the conditions of reality (for local stability) and causality imply the restrictions

0 ≤ wN ≤ 1. (83)

It has been rather unfairly suggested that, compared with such ordinary fluid models, k-
essential and other scalar models are advantaged by the absence of such a restriction, since
they have squared characteristic velocity, v 2

S —as given by (7) of the article [17] referred
to—that “can be positive for any” value of the relevant “equation of state” ratio, wS.

The reason why this is unfair is that if wS is a bona fide “equation of state” parameter,
meaning that it is actually constant, then the corresponding equation of state, namely the
poly-essential ansatz (81) entails, according to (65), that the relevant propagation velocity
will be given by

v 2
S = (αS − 1)−1 = wS, (84)

which means that the situation will just the same as in the ordinary fluid case, in so much as
the corresponding restriction

0 ≤ wS ≤ 1. (85)

will have to be satisfied.
The way suggested by Bucher and Spergel [8] for getting over the restriction (83) is to

a seek a mechanism providing elastic rigidity. As an alternative, the way the advocates of
k-essential (and other quintessential) cosmological models [18] propose to get around the
restriction (85) is of course to drop the postulate that wS should be a genuine “equation of
state” parameter, and instead use equations of state of more general kinds in which wS is
demoted from the status of a fixed parameter to that of a variable field. What is unfair is
to give the impression that the possibity of doing that is a privilege distinguishing scalar
field models from “normal” fluid models: in fact the use of more general kinds of ordinary
fluid model—in which the density to pressure ratio wN is just a variable field that may be
quite different from the squared sound speed—is actually commonplace in many areas of
astrophysics, and should not be prematurely ruled out of consideration in a cosmological
context.

8 Conclusions

The category of models presented in the preceeding work is sufficient for a wide range of
cosmological applications of the traditional 3 + 1 kind in which the codimension q is taken
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to be zero, so that the spacetime metric can be taken to governed by the ordinary Einstein
equations.

The treatment here has been set up in such a way as to be applicable also to scenarios
in which our 4-dimensional spacetime manifold is considered to be a thin worldbrane in a
higher—meaning 4 + q—dimensional background with a given geometry. However for that
kind of application it is difficult—despite the efforts of many workers in recent years—to see
how to allow realistically for the effect of gravity except in a Cowling type approximation in
which the scale of the perturbations is supposed to be sufficiently small (compared with the
relevant Jeans length) for their self interactions to be neglected. A much studied (albeit only
marginally plausible) possibility—that is beyond the scope of the present treatment but that
does include allowance for strong gravitational coupling—is that of the Randall–Sundrum
q = 1 type scenarios [20, 21] (and their reflection symmetry violating generalisations [22,
23]) but the unsatisfactory features of such scenarios include the loss of effective predictabil-
ity due to incoming gravitational waves from the bulk.

In scenarios with codimension q ≥ 2 it is even harder to see how to allow properly for
gravitation. Attempts to account for the appearance of 4-dimensional gravity as a simulated
effect [24] due to acceleration with respect to a fixed bulk geometry tend to predict comport-
ment of scalar—tensor type rather than the pure spin—2 gravity that is actually observed.
Progress has however been achieved [15, 16] in the regularisation of the divergences that
will result from true gravity in the bulk, and that can be allowed for (if not too strong)
within a treatment of the kind presented here as an extra contribution to the effective stress
energy tensor appearing in the extrinsic characteristic equation (25). The condition that the
extrinsic propagation velocities should always be real and compatible with causality will
evidently restrict the admissible values of the eigenvalues of the net stress-energy tensor
in (25). In particular, if it is of the isotropic form

T μν = ρ((1 + w)uμuν + wḡμν) (86)

then the extrinsic propagation velocity vE will be given by

v 2
E = −w. (87)

It follows (unless the codimension q is zero) that instead of being subject to a positivity
condition of the familiar kind exemplified by (83) and (85) the net pressure to density ratio
w will have to satisfy the negativity condition

−1 ≤ w ≤ 0. (88)

Such pressure negativity is not incompatible with the observational evidence, but does ex-
clude the possibility of describing the universe just in terms of scalar fields and fluids that
are purely of respectively poly-essential and polytropic type.
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